
Genetic Evolution of Shape-Altering Programs
for Supersonic Aerodynamics

Robert A. Kennelly, Jr.
High Speed Aerodynamics Branch, MS 227-6

NASA Ames Research Center

Moffett Field, CA 94035-1000

RAKennelly @ mail.arc.nasa.gov

ABSTRACT

Two constrained shape optimization
problems relevant to aerodynamics are
solved by genetic programming, in

which a population of computer
programs evolves automatically under

pressure of fitness-driven reproduction
and genetic crossover. Known optimal
solutions are recovered using a small,
naive set of elementary operations.
Effectiveness is improved through use
of automatically defined functions,
especially when one of them is capable
of a variable number of iterations, even

though the test problems lack obvious
exploitable regularities. An attempt at
evolving new elementary operations

was only partially successful.

1. Introduction

Optimal aerodynamic shaping offers a wide variety of
problems ranging from two-dimensional airfoils in
linearized (inviscid) sub- or supersonic flow to three-
dimensional arrangements of interacting components in a
flow field dominated by viscous effects. While some of the
problems can be attacked analytically, the most complex
configurations are still "optimized" by cut-and-try methods,
with expensive and slow experimental validation of each
step taken. For cases of intermediate difficulty, gradient-
based numerical optimization is becoming practical for
well-structured problems employing well wrung-out
aerodynamic analysis codes. Indeed, such optimization may
be crucial for the development of future supersonic
transport aircraft. But appropriate parameterization remains
something of an art, and the stringent requirements of this
technique for reliability and precision are difficult to meet
without violating a third requirement: sufficient speed to
permit hundreds or thousands of objective function
evaluations in a "reasonable" length of time.

Because the marketplace for air vehicles is evolving
concurrently with design methods, each design problem
tends to be different. Powerful (but complex) methods for
solving last year's design problem may not be the best
means to realize the shorter design cycles (Rubbert 1994)
felt to be critical to commercial success. The work

described herein, an examination of genetic programming

(Koza 1992) in the context of shape optimization,
represents a small step in the direction of a more general
class of aerodynamic design optimization techniques. The
long-term goal is to investigate whether the new approach's
advantages of inherent flexibility and tolerance of low-
precision performance measures are sufficient to overcome
its relative lack of efficiency and uncertain convergence
properties.

Toward this end, two simple, two-dimensional shape
optimization problems, one purely geometric and the other
based on supersonic aerodynamics, are solved using genetic
programming (GP) to evolve a population of LISP-like
"programs." These objects, appropriately interpreted, direct
a sequence of alterations of the initial shape. The evolution
of the individuals in the program population proceeds under
the influence of Darwinian fitness-driven reproduction,
modified in the majority of instances by the genetic
"crossover" operation (see, for example, Holland 1992 or
Koza 1992). If one of the individuals succeeds in satisfying
a termination criterion, i.e., the shape resulting from the
program-directed modifications meets the specified
requirements, the problem is considered soN'ed.

The experiments to be described are exploratory, and
there is no assurance that genetic programming will ever
lead to the flexibility sought. These samples of shape
optimization may, however, provide signposts for future,
more general work on structural requirements of the genetic
programs, sufficiency of the elementary operation set, and
appropriate choices for the basic parameters of the GP
process.

Related work is briefly reviewed in Section 2, followed
in Section 3 by a description of the test problems. Section 4
presents several methods of solution, and the results follow
in Section 5. Possibilities for further research are the topic
of Section 6, and the paper is summarized in Section 7.

2. Background

Aerodynamic shape optimization, understood in what
follows to refer to numerical optimization of the.detailed
shape of an aircraft's external surface, has a history of at
least three decades. Some early research results are
provided in the list of references (Hague, Rozendaal, and
Woodward 1968; Hicks, Murman, and Vanderplaats 1974).
These, and other studies, all employ perturbations to a given
initial configuration, often subject to explicit or implicit
constraints. The optimization algorithm iteratively modifies
parameters representing the perturbations as it seeks
improvements in some computed, scalar measure of

to {1.2 15} to remain within the array bounds. In
addim.m, most of the problem tbrmulations used a small set
of elementary shape-modifying operators, along with one or
more automatically defined functions (ADF0, ADF1)

which are themselves composed of the elementary
operators. These operators were BUMP, which multiplies

YhotSpot by [.01, and GRIND, which, for 2 < hotSpot _< 14,

replaces YhotSpot by (YhotSpot+l + YhotSpot-l)/2, the
mean of the two neighboring points. An additional terminal,
TAP, was used for some of the later runs. It modifies the

shape as follows:

YhotSpot = YhotSpot - 0.010 * MIN_THICK;

the latter quantity is the thickness constraint value for the
airfoil problem. All of these terminals return a value of 1.0,
unconditionally.

BUMP and GRIND were naive choices in that they were
simply the first plausible operations dreamed up---while
selected for their presumed utility in modifying a pre-
existing shape, they have no special characteristics suiting
them to the two problems posed. TAP, as will be seen, was
chosen in response to observed behavior on the airfoil
problem. But all three operations can be viewed as
intermediate in functionality: they produce modest, local
changes in shape, in contrast to the higher order "tools"
such as will be seen to evolve as automatically defined
functions. At the other extreme was a more-nearly "hands-
off" approach attempted with the semicircle problem, where
the only operations were {+, -, *, %}. This latter
experiment will be described more fully below.

The function set consisted of PROGN, a 2-branch "glue"
function which merely evaluates both of its arguments,
returning the value of the last, and IPB, an iteration-
performing function. In many of the later runs, an
ephemeral random constant, CONST, is also available to
provide an iteration count for IPB. The value of each
instance of CONST is determined once, chosen from the

floating point "integers" 1.0 to 15.0, at the time the initial
population is created. The effect pointer, hotSpot, is

arbitrarily reset to one at the beginning of each iteration
pertbrmed by IPB.

The genetic software engine employed was "DGPC--
Dave's Genetic Programming in C". (Andre, David. 1995.

http://www.cs.berkeley.edu/-dandre). Using hooks
provided by the DGPC software, the problem-specific
terminals and functions were coded in C. A modification to
the section of DGPC which evaluates ADF branches turned

a specific ADF into the function IPB, controlled by the
value of its input as described below. Another modification

was required to permit each ADF, upon termination, to
modify y[hotSpot] as a side-effect--this was part of an

attempt to evolve the form of the elementary operations
rather than relying on BUMP, GRIND, and TAP. The
program was compiled and run on various models of

Indigo 2 workstation (Silicon Graphics, Inc., Mountain
View, CA).

5. Results

5.1. Semicircle
Of a number of variations on choice of terminals, structure,
and run parameters, four have been selected for discussion,
to be followed by brief mention of some dead ends.

5.1.1 RPB with Two Specialized ADFs

This structure was motivated by the idea that interesting
meta-tools might evolve by requiring the re-use of two
specialized automatically defined functions; no other means
of changing the shape was possible. While solutions were

obtained, it must be confessed that the resulting ADFs have
so far defied simple interpretation.

Following Koza (1992), we describe the preparation for
solution of the problem by GP in terms of five major steps:

1. The terminals consist of the navigation operators INC
and DEC, two elementary shape operations BUMP and
GRIND, and two automatically defined functions ADF0
and ADFI, which despite their names actually serve as
terminals rather than functions in this case. The ADFs

Table 1. GP tableau for the first version of the semicircle problem,
"RPB with Two Specialized ADFs."

Objective Minimize perimeter subject to area constraint.

Terminals RPB: ADF0, ADFI

ADFO: INC, DEC, BUMP

ADFI: INC, DEC, GRIND

Functions RPB: PROGN (2-branch)

ADF0: PROGN

ADF 1: PROGN

Standardized Fitness (Perimeter - re,r2) + 1,000 max (r48 - Area, 0)

!Success Predicate handardized Fitness < 0.010

Parameters Population 4,000 Max Nodes Per RPB 200

Generations 31 Max Depth New Tree 5

Table2. GP tableau for the "Hands Off" version of the semicircle problem.

Objective

Terminals

Minimize perimeter subject to area constraint.

RPB: INC, DEC, ADF0, ADF1

ADF0: Y, Y-*., Y-, CONST (values from 1 to 15)

ADFI: Y, Y÷, Y-, CONST (values from I to 15)

Functions RPB: PROGN (2-branch)

ADF0: ÷, -, *, %

ADFI +, -, *, %

Standardized Fitness (Perimeter - _/2) + 1,000 max (rd8 - Area, 0); < 1.0e+30

Success Predicate Standardized Fitness < 0.010

Parameters Population 40,000

Generations I01

Max Nodes Per RPB 1,000

Max Depth New Tree 7

always return 1.0. The RPB was otherwise unchanged:

shape modifications could only be performed indirectly, by
calling either ADF or I PB. All of the GP run parameters
were restored to the values in Table 1.

Twenty straight successes were recorded. The average

run required I0 generations and lasted 3.5 minutes. One
individual is positively svelte by comparison to the results
of the previous runs, even with the extraneous ARGO
terminals in the IPB ("ADF_Num I", in boldface, below)

supplied.by DGPC but unused here:

Run 497 Gen:5 BestFitness:0.00792

RPB_Num 0 (17 nodes)
(ADFI {PROGN (ADFI (ADFI 5.0))(PROGN

(PROGN (ADFI (ADFI (ADFI (ADF0))))

(PROGN (ADFI 7.0) (ADF0))) (ADFI 5.0))))

ADF_Num 0 (31 nodes)

(PROGN (PROGN (PROGN (PROGN (BUMP) (INC))

(PROGN (INC) (GRIND))) (PROGN (PROGN

(GRIND) (DEC)) (PROGN(INC) (BUMP))))

(PROGN (PROGN (PROGN (BUMP)(GRIND))

(PROGN (BUMP) (DEC))) (PROGN (PROGN

(GRIND) (DEC)) (PROGN (INC) (BUMP)))))

ADF_Num 1 (31 nodos)
(PROGN (PROGN (PROGN (PROGN (DEC)(ARGO))

(PROGN (ARGO) (BUMP))) (PROGN (PROGN

(BUMP) (ARGO)) (PROGN (ADF0) (GRIND))))

(PROGN (PROGN (PROGN (ADF0)(GRIND)(PROGN

(ADF0) (INC))) (PROGN (PROGN (ARGO) (BUMP))

(PROGN (ADF0) (INC)))))

The formal structure of the GP with an IPB will be clarified

below, in Table 3, where a tableau for the parameters of the
airfoil problem is presented.

5.1.4 RPB with Two ADFs; "Hands Off"

We briefly describe an attempt to progress from evolution
of tool-using behavior to evolution of the tools themselves.
This version of the problem is similar in structure to the
case considered in Section 5.1.2, RPB with No ADFs,

except that where in the previous version the RPB was
permitted to use BUMP and GRIND, in the present case the

RPB must fashion tools from two ADFs which only have

recourse to the operations of arithmetic. Specifically, the
automatically defined functions were composed of {+,-, *,

%} operating on {YhotSpot, YhotSpot+l, YhotSpot-1 } and a
random constant chosen from { 1.0, 2.0 15.0}, an

arbitrary set. The problem size was increased in terms of
population, generations, and tree depth, in keeping with the
experience gained from the earlier, analogous case using
BUMP and GRIND; see Table 2.

While the computer's operating system was tolerant of
infinities and undefined floating point operations, the
arithmetic operations were protected for the sake of
monitoring statistics such as mean and variance of the
population's fitness values. Thus % was ordinary division
unless the result would exceed 1.0e+15 in magnitude, in
which case the value returned was 1.0, consistent with the

spirit of protected division in (Koza 1992). The other
operations were simply capped at +l.0e+15, and
standardized fitness was capped at 1.0e+30. This mild
protection permitted wide (perhaps excessive) variation in
the magnitude of the shape alterations.

Each time the result producing branch called one of the
ADFs, the y-value at the current hotSpot was replaced by
the quantity calculated within the ADF--this was
implemented as a side-effect. The intention was to mimic
the earlier case, but with evolvable ADFs in place of BUMP

and GRIND (which are expressible in the same terms as
were available to the ADFs). This would ensure the

existence of solutions at least as good as those reported

previously.
This attempt was not fully successful. Of I0 runs, lasting

on average four hours apiece, only two made any.progress
whatsoever. The rest immediately hit upon one of a variety
of ways to leave the initial shape unchanged, and never
progressed. Of course, given that standard fitness could, and
did, reach as high as 1.0e+30, the "do nothing" score of

0.429204 does not look so bad. A noteworthy difference
between these and previous runs was that while there was

wide variation in the initial, random population's fimesses,
the variation was invariably on the side of worse fitness
than the undisturbed embryo's--this despite a population

Table3. GP tableau for the diamond-shaped airfoil problem using an IPB, new TAP
operation, and increased population size and depth limit for new trees.

Objective Minimize drag subject to thickness constraint.

Terminals RPB: ADF_ CONST (values from 1 to 15)

ADF: INC, DEC, BUMP, GRIND, TAP

IPB: ADF, INC, DEC, BUMP, GRIND, TAP

Functions RPB: IPB, PROGN (2-branch)

ADF: PROGN

_IPB: PROGN

Standardized Fitness (Drag - 0.0Jl0) + 1,000 max (0. I0 - Thickness, 0)

Success Predicate Standardized Fitness < 0.0040

rParameters Population I0,000 Max Nodes Per RPB 200

Generations 31 Max Depth New Tree 6

Examination of the "near-miss" shapes revealed a
common feature: most were too blunt fore and aft, but
matched the known solution in the middle of the chord.
Since it seemed to be difficult to reduce the thickness at the

ends of the shape-defining array (perhaps because the
leading and trailing edge points were fixed), a new
elementary operator was defined. TAP, described above,
reduces thickness by a fixed, absolute amount scaled to the

problem, and turned out to be what was needed. Another set
of parameter-varying runs resulted in the formulation
summarized in Table 3. Note that both the population size
and maximum new tree depth have been increased. In
return, for three runs out of three, success is achieved in an

average of 22 generations. The time required averaged
about two hours per run to meet the termination criterion.

Among the better results observed, on one run a standard
fitness of 0.002458 was reached on generation 18. The 157-

node program which produced the result is reproduced
below, and is no more comprehensible than the previous
examples. The iteration performing branch is highlighted in
boldface type. The effect of just a single iteration on the
starting airfoil gives some idea of what is happening. This is
plotted to exaggerated scale in Figure 2, along with the
theoretical optimum shape, the initial airfoil, and the final
result. The IPB uses all the available terminals and

functions to alter the starting shape in a plausible, but non-

intuitive way.

Run 355 Gen:18 BestFitness:0.00246

RPB_Num 0 (31 nodes)

(PROGN (PROGN (PROGN (PROGN (ADF0) 3.07

(PROGN (ADF0) (ADF0))) (ADFI (PROGN (PROGN

(ADF0) (ADF0)) (PROGN (ADF0) (ADF0)))))

(PROGN (ADFI (ADFI (ADFI 2.0))) (ADFI

(ADFI (PROGN (ADFI (ADFI (ADF0)))(ADF!

(ADFI 2.0)))))))

ADF_Num 0 (71 nodes)
(PROGN (PROGN (PROGN (PROGN (PROGN

(BUMP) (INC)) (PROGN (TAP) (BUMP)))

PROGN (PROGN (BUMP) (GRIND)) (PROGN

INC) (BUMP)))) (PROGN (PROGN (PROGN

BUMP) (DEC)) (PROGN (DEC) (BUMP))) (PROGN

PROGN (DEC) (TAP)) (PROGN(TAP) (GRIND)))))

PROGN (PROGN (PROGN (PROGN (GRIND)

TAP)) (PROGN (TAP) (BUMP))) (PROGN (PROGN
INC) (BUMP)) (PROGN (BUMP) (TAP)))) (PROGN

PROGN (PROGN (INC) (GRIND)) (PROGN

GRIND) (DEC))) (PROGN (PROGN (INC) (BUMP))

PROGN (PROGN (INC) (BUMP)) (PROGN (PROGN

(BUMP) (DEC)) (PROGN (BUMP) (INC)).))))))

ADF_Num 1 (55 nodes)
(PROGN (PROGN (PROGN (PROGN (PROGN

(ADF0) (GRIND)) (PROGN (ADF0) (ADF0)))

(PROGN (PROGN (DEC} (DEC)) (PROGN
(ADF0) (ADF0))))(PROGN (PROGN

(ARGO) (ADF0)) (PROGN (PROGN (PROGN

(BUMP) (BUMP)) (PROGN (GRIND) (GRIND}))

(PROGN (PROGN (ADF0) (ADF0)) (PROGN

(TAP) (BUMP)))))) (PROGN (PROGN (PROGN

(BUMP) (BUMP)) (PROGN (PROGN (TAP) (DEC))

(PROGN (DEC) (BUMP))))(PROGN (PROGN

(BUMP) (INC)) (PROGN (BUMP) (BUMP)))))

The shape crafted by this program is a close match to the
known optimum. The thickness constraint is active, and the

expected fore/aft symmetry has appeared. This solution
required approximately 220,000 fitness evaluations, though
this is probably not be the best that can be achieved.

6. Future Work

These test problems were simple enough to solve by other,
more conventional (and efficient) means. Indeed, with the

static parameterization and modest number of variables
employed here, straightforward application of the genetic
algorithm on the {Yi} would presumably work, and without

all the overhead required by "navigation" within the array.
It will be interesting to see whether there are non-trivial
shaping problems susceptible to solution by GP. In

Table 4. Summary of semicircle problem outcomes.

Description

RPB with Two Specialized ADFs
RPB with No ADFs

RPB with ADF and IPB

RPB with Two ADFs; "Hands Off''

Runs

25

10

3

20

l0

Success Average Average Parameters
No. Gens. Duration

36% Table l

0% Table I

100% 11 20 min

100%

0%

10 3.5 rain
Larger pop.. depth, nodes
Table 1

Larger pop., depth, nodes, gens.

The approach employed, using the hotSpot pointer and
navigation operators on the array representing the shape,
and using side effects to change the shape, proved to work
reasonably well. But the present test problems did not
explore whether this approach can add enough flexibility to
compensate for the navigational overhead; the number and
location of the shape's defining points remained fixed, for

example.
Automatically defined functions, especially those

capable of iteration, provide powerful leverage in obtaining
a solution. ADFs proved useful despite the lack of any
obvious exploitable regularity in the problems--this may be
a new result. The solutions found with ADFs, especially
those capable of iteration, were much smaller than those
without; indeed, in the latter case the semicircle problem
was not solvable until the node limit was raised from 200 to

1,OO0. Thus the subtle regularities discovered using ADFs
and iteration were evidently sufficient to fit the necessary

number of operations within the node budget, and these
solutions were also obtained more quickly.

No special parameterization of the problem was
required, but selection of a sufficiently-general set of
elementary operations appears to take its place as an
important preliminary step. Perhaps a universal set can be
formulated or evolved. In any event, the intentionally-naive
set employed here, and the initial difficulties with tool
evolution reported, should not be taken as the last word on
function selection.

Substantial computer effort was required even for the
test problems' simple fitness functions. Some additional
work will be required to determine whether better choice of
elementary operations, further structural refinements, etc.,
are able to improve efficiency significantly. But since flow
analysis codes used in current design optimization require
from 0.10 sec to 1,000 sec per evaluation, large-scale
parallel computers will probably be required for real-life
applications of genetic programming to aerodynamics.

References

Grasmeyer, Joel. 1997. Application of a Genetic Algorithm
with Adaptive Penalty Functions to Airfoil Design.
AIAA 97-0007. January 6-10, Reno, NV.

Hague, D. S., H. L. Rozendaal, and F. A. Woodward. 1968.

Application of Multivariable Search Techniques to
Optimal Aerodynamic Shaping Problems. J. Astronaut.
Sci. 15:283-296.

Hicks, R. M., E. M. Murman, and G. N. Vanderplaats.
1974. An Assessment of Airfoil Design by Numerical

Optimization. NASA TM X-3092.

Holland, John H. 1992. Adaptation in Natural and Artificial
Systems. 2d ed. Cambridge, MA: MIT Press.

Kennelly, Jr., Robert A. 1983. Improved Method for
Transonic Airfoil Design-by-Optimization. AIA.A 83-
1864. July 13-15, Danvers, MA.

KenneUy, Jr., Robert A. 1997. Genetic Evolution of Shape-
Altering Programs for Supersonic Aerodynamics. In
Koza, John R. (compiler). Genetic Algorithms and
Genetic Programming at Stanford 1997. Stanford, CA:
Stanford University Bookstore.

Koza, John R. 1992. Genetic Programming: On the
Programming of Computers by Means. of Natural
Selection. Cambridge, MA: MIT Press.

Liepmann, Hans Wolfgang, and Alien E. Puckett. 1947.
Introduction to Aerodynamics of a Compressible Fluid.
New York: John Wiley & Sons. Chapter 9.

Quagliarella, Domenico, and Antonio Della Cioppa. 1995.
Genetic Algorithms Applied to the Aerodynamic Design

of Transonic Airfoils. Z Aircraft 32:889-891.
Rubbert, Paul E. 1994. CFD and the Changing World of

Airplane Design. AIA.A Wright Brothers Lecture. Sept.
18-23, Anaheim, CA.

